Modeling Seismic Wave Propagation Using Graphics Processor Units (GPU)

نویسندگان

  • Zhangang Wang
  • Suping Peng
  • Tao Liu
چکیده

The main drawback of the seismic modeling in 2D viscoelastic media on a single PC is that simulations with large gridsizes require a tremendous amount of floating point calculations. To improve computation speedup, a graphic processing units (GPUs) accelerated method was proposed using the staggered-grid finite difference (FD) method. The geophysical model is decomposed into subdomains for PML absorbing conditions. The vertex and fragment processing are fully used to solve FD schemes in parallel and the latest updated frames are swapped in Framebuffer Object (FBO) attachments as inputs for the next simulation step. The simulation program running on modern PCs provides significant speedup over a CPU implementation, which makes it possible to simulate realtime complex seismic propagation in high resolution of 2048*2048 gridsizes on low-cost PCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MPI- and CUDA- implementations of modal finite difference method for P-SV wave propagation modeling

Among different discretization approaches, Finite Difference Method (FDM) is widely used for acoustic and elastic full-wave form modeling. An inevitable deficit of the technique, however, is its sever requirement to computational resources. A promising solution is parallelization, where the problem is broken into several segments, and the calculations are distributed over different processors. ...

متن کامل

GPGPU-Aided 3D Staggered-grid Finite-difference Seismic Wave Modeling

Finite difference is a simple, fast and effective numerical method for seismic wave modeling, and has been widely used in forward waveform inversion and reverse time migration. However, intensive calculation of three-dimensional seismic forward modeling has been restricting the industrial application of 3D pre-stack reverse time migration and inversion. Aiming at this problem, in this paper, a ...

متن کامل

Accelerating geoscience and engineering system simulations on graphics hardware

Many complex natural systems studied in the geosciences are characterized by simple local-scale interactions that result in complex emergent behavior. Simulations of these systems, often implemented in parallel using standard central processing unit (CPU) clusters, may be better suited to parallel processing environments with large numbers of simple processors. Such an environment is found in g...

متن کامل

Seismic wave propagation simulations on low-power and performance-centric manycores

The large processing requirements of seismic wave propagation simulations make High Performance Computing (HPC) architectures a natural choice for their execution. However, to keep both the current pace of performance improvements and the power consumption under a strict power budget, HPC systems must be more energy e cient than ever. As a response to this need, energye cient and low-power proc...

متن کامل

High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster

We implement a high-order finite-element application, which performs the numerical simulation of seismic wave propagation resulting for instance from earthquakes at the scale of a continent or from active seismic acquisition experiments in the oil industry, on a large cluster of NVIDIA Tesla graphics cards using the CUDA programming environment and non-blocking message passing based on MPI. Con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010